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ALL THREE REPLIES TO REVIEWERS ARE INCLUDED BELOW: 
 
RE: Rodent reservoirs of future zoonotic diseases 
 
 
Dear Dr. Levin and Dr. McMichael,  
 
Thank you for editing our manuscript and providing us with the opportunity to submit a revised 
version. We have addressed all of the comments and suggestions by the two reviewers, which 
you will find below in blue text. We feel that these constructive comments have improved the 
manuscript and we hope that you will now find the paper suitable for publication in PNAS.  
 
Thank you very much for your efforts in the communication of our work.  
 
All the best,  
 
Barbara Han 
 
 
 
REVIEWER 1: 
  
This paper is a methodical and statistically robust appraisal of one important group of zoonotic 
reservoirs, rodents. Machine based learning appears to be a valuable tool. Key results indicate 
zoonotic rodent hosts and super hosts are characterised by a "fast-paced" life history strategy, 
larger geographic ranges, and overlap with at leat 50 people/km2 human density. These are 
characteristics previously reported (although derived differently) in other studies. I think it would 
be preferably to acknowledge that these results confirm earlier findings or hypotheses 
(particularly as they used other data sources), e.g. a selection:  
 
Generalist hosts and generalist pathogens, broad overlapping host ranges are discussed in 
work by Cleaveland et al. 2001; Taylor et al. 2001; ME Woolhouse, including:  
 
Woolhouse MEJ & Gowtage-Sequeria S (2005) Host range and emerging and reemerging 
pathogens. Emerging Infect. Dis. 11:1842-1847.  
 
Davies TJ & Pedersen AB (2008) Phylogeny and geography predict pathogen community 
similarity in wild primates and humans Proc. R. Soc. B 275(1643 ):1695-1701.  
 
the association with human modified environments generally:  
 
McFarlane, Ro, Adrian Sleigh, and Tony McMichael. "Synanthropy of Wild Mammals as a 
Determinant of Emerging Infectious Diseases in the Asian-Australasian Region." EcoHealth 9.1 
(2012): 24-35.  
 
and more specifically for rodents and including other life history traits:  
 
Bordes, Frederic, Vincent Herbreteau, Stephane Dupuy, Yannick Chaval, Annelise Tran, and 
Serge Morand. "The diversity of microparasites of rodents: a comparative analysis that helps in 
identifying rodent-borne rich habitats in Southeast Asia." Infection ecology & epidemiology 3 
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(2013).  
 

We’re grateful to Reviewer 1 for taking the time to compile this list. We have now 
added several of the suggested references (see reference numbers 1, 5, 6, 25, 26) 
and we draw attention to the ways in which the results of our clade-level analysis 
corroborate the findings of other studies in specific hosts and disease systems 
which draw upon independent data sources (see in particular line 107-111 with 
reference to a new study by Ostfeld and colleagues, ref #28). Here we also added 
text to mention patterns of synanthropy and zoonotic reservoirs (including 
McFarlane et al. and Bordes et al. references suggested above; refs #22-23),  
 
We didn’t explicitly investigate host range (the diversity of host species a parasite 
may infect) in our analyses  or patterns of parasite sharing and overlap among 
wild host species, so we have refrained from discussing our results in this 
particular context. 

 
Current literature providing a rationale for the association with fast living strategies is 
convincing.  
 
I have some concern regarding source data despite the high accuracy of the models to predict 
zoonotic reservoirs. The study is based on the PANtheria database (the principle author of 
which is also the first author of an influential paper in this field, and cited by this study i.e. Jones 
KE et al., 2008). This might raise issues of independance of findings, particularly for the 
variables generated for each species describing the anthropogenic and environmental 
conditions within each geographic range based on the extent of digital species range maps - 
each step with its own assumptions.  
 

We had difficulty interpreting this comment, and we are not sure what the reviewer 
means by “independence of findings”. We found the vast majority of the 
environmental and anthropogenic variables were not important predictors of 
zoonotic reservoir status (see trait profiles in Table S2). The environmental and 
anthropogenic variables are calculated in PanTHERIA as a central tendency 
across the geographic range of the host species, so the species ranges would 
have to suffer from large inaccuracies in order to throw off statistical results. In 
addition, inaccuracies in PanTHERIA would tend to obscure statistical 
relationships rather than generate them, unless all of the data happens to be 
wrong in the same direction. While it is possible, it is hard to imagine what 
inaccuracies in the range shape files could be propagated across both the 
environmental and the anthropogenic variables to cause them to be wrong in a 
correlated way.  

 
 
Some further critical thinking or clearer writing could improve this work. I have particular issue 
with the following:  
 
"Current hot spots of rodent reservoir diversity occur in North America, the Atlantic coast of 
South America, Europe, Russia, and parts of Central and EastAsia (Figure 2). These hot spots 
generally coincide with regions of high mammal biodiversity (Figure S2) where the risk of 
zoonotic disease emergence is greatest (2), but there are fewer rodent reservoirs in South 
America and Africa than expected given the high levels of mammal biodiversity in these 
regions".  
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Do the authors mean to use high mammal diversity as a proxy for rodent diversity? Obviously 
some areas favour rodents, reservoir or otherwise. For example, there are globally 2261 rodent 
species, 609 are found in south America- largest number per continent or land region (in fact 
accounting for about a half of S.American mammal diversity: 609/1295 total mammal spp. 
Rodents are a very small proportion of total mammal diversity in parts of Oceania.  
 

In this section we meant to place rodent reservoir diversity in context with 
biodiversity writ large to acknowledge that patterns of reservoir diversity could be 
driven by overall patterns of mammal biodiversity, and to place our results in 
context with conclusions from Jones et al. which suggest that zoonotic disease 
emergence should coincide with regions of high biodiversity. We had not 
previously considered placing our results in the context of rodent biodiversity 
specifically, but following reviewer suggestions we have discussed our results in 
the context of recently published rodent biodiversity maps (Jenkins, Pimm & 
Joppa 2013), line 93.  

 
 
Do the authors accept these findings from Jones et al 2008 uncritically ("regions of high 
mammal biodiversity ....where the risk of zoonotic disease emergence is greatest (2)")? That 
was a broad brush analysis that could be refined with the help of this study, i.e. rodents are the 
most diverse mammal group, they are important in many reemerging diseases as well as first 
emergences of new pathogens - the event of interest in Jones et al 2008. This issue is far more 
interestingly and critically dealt with elsewhere where the authors state that:  
 
"predicted rodent reservoirs occur broadly, spanning all biomes, in regions that exhibit a wide 
range of mammal species richness and in middle to high income economies. Nearly all of the 
predicted hyper-reservoirs occur in upper latitudes in developed nations with relatively low 
biodiversity..... in ecoregions that experience an appreciable degree of seasonality"  
 
It would be interesting to discuss the implications of these findings further.  
 

In lines 91-94 and 103-107 we have included additional discussion of our results 
with these comments in mind. In particular, we note that while geographic ranges 
of the predicted reservoirs diverge from those reported in Jones et al. 2008, they 
do coincide with regions where human EIDs are most concentrated (as reported 
by Jones et al. 2008, Suppl. Fig. 1, 2a). As noted by the reviewer, this is 
particularly interesting given that rodents are often associated with first 
emergence of new human pathogens, which is the focal point of the Jones et al. 
paper. 
 

 
Also, how the findings of this study match with zoonoses incidence and/or burden of disease in 
these hot spots would be important to clarify, and the difference between the two (occurrence of 
host and incidence of disease) should be made explicit.  
 

We thought this was a great suggestion and an important addition to the paper. To 
examine the human burden of disease we compiled data on the number of rodent-
borne disease outbreaks in humans since 1990 at the country scale, as well as the 
total number of rodent-borne zoonoses that are found within each country. From 
these data we created a new map illustrating regions exhibiting the highest 



 4 

diversity of rodent-borne zoonoses, and where the most outbreaks of these 
diseases have occurred globally. This map also shows the geographic ranges of 
rodent species predicted to be undiscovered carriers of zoonoses.  
 
This new map corroborates supplementary findings of Jones et al. 
(Supplementary Figure 1, 2a) and shows that predicted reservoir species are 
distributed in countries with high burdens of rodent-borne zoonoses (countries 
that either show a large number of distinct zoonoses, or countries which exhibit 
numerous outbreaks).  

 
 
I would feel more confident in the methodology and results of this study if these were tempered 
by consideration of points raised above. However I congratulate the authors for their innovative 
approach to advancing this area of research.  
 
 
REVIEWER #2:  
 
Comments:  
Han et al. using machine learning methods to identify the probability of a rodent species being a 
novel zoonotic reservoir host, or if the species is already a host, becoming a super-reservoir, 
based on species' life history, ecology and geographic traits. Han et al. create and describe the 
model and then use the model to predict 20 species as either being novel potential reservoir 
species or new super-reservoir hosts and plotted on species richness maps as hotspots.  
 
The manuscript is certainly topical and addresses an important topic of general interest - that of 
creating methods to predict reservoir hosts of new, or hosts with more, zoonotic pathogens and 
thereby better understand the process of zoonotic emergence. The ms is clearly written and the 
figures are of good quality. I liked the machine learning approach and although not completely 
novel in life history or conservation analyses (see Bland et al. 2014 Conservation Biol) it is 
definitely interesting and valuable. However, there are some questions about the analyses that 
are not clear and may be potentially confounding, there is also a lack of clarity in the 
presentation of the results and in general I am not convinced that the ms presents the 
conceptual leap needed for publication in PNAS. My specific points are as follows:  
 
1. Analyses - (a) The analyses appears to have taken 216 species' traits that are reported as 
zoonotic (having a pathogen that is shared with humans) and split the data into a training and 
testing set to build the machine learnt algorithm and test its performance (zoonotic/non-zoonotic 
and zoonotic/super-reservoir zoonotic). It is not clear how the zoonotic/non-zoonotic analyses 
were performed as conceptually to build a model you would need to have some 'zeros' in the 
analyses. Zeros in this context would be species which have been investigated for pathogens 
but don't have ones shared with humans. There are lots of species in the analyses without 
zoonotic pathogens (2277 minus 216 species) but it is not clear if these are a) true zeros, or b) 
have been included to train the model to recognise zoonotic species. This is in some ways 
analogous to niche modelling's presence/absence data, and where real absence data is not 
available, pseudo-absences are often created. It is not clear to the reader if these types of 
absence data are included or needed to be included.  
 

The reviewer identifies several methodological questions that that we have taken 
care to address in our revision. 
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The 216 reservoir species and 2061 other rodent species were combined for a 
total of 2277 species (lines 57-58). These species were divided into a training set 
(80% of all 2277 species) and a test set (the remaining 20% of all species), with 
both training and test sets containing reservoir species (lines 151-152). Thus, we 
adopted a conservative approach in designating a single contrast class 
(reservoirs) vs. everything else. In other words, we considered species that have 
been sampled and found not to harbor zoonotic pathogens the same as those 
which have no prior surveillance history. We did this to acknowledge the 
uncertainty inherent in designating species as ‘non-reservoirs’ (e.g., in the worst 
case, species for which a single individual tests negative for a given zoonotic 
pathogen probably should not be treated as a ‘non-reservoir’ species). A more 
conservative designation which applies the same label to non-reservoirs and 
unknown species would lead also to more conservative models whose 
classification performance can only increase with the addition of newly 
discovered reservoir species in the future (discussed in lines 154-159).  
 
As an additional check, we conducted another boosted regression analysis with 
the reservoir species duplicated in the data set as “unknowns” (i.e., labeled the 
same as the other 2061 species; referred to here as Method B). This gives the 
effect of looking at presence vs. background (all rodent species), as suggested by 
the reviewer, and contrasts with our approach (Method A). Results show that both 
analyses give similar trait profiles, but the rate of detecting true or known 
positives is much higher with Method A. At the same time, Method A yields a 
higher false positive rate, and may therefore be flagging more species currently 
labeled as unknown but likely to turn out positive if targeted for surveillance. In 
our view, a higher false positive rate (classifying a species as a reservoir when it 
is not) is preferable given the potential costs of missing a novel reservoir. We plot 
the comparison between Methods A and B below using ROC curves, a common 
diagnostic of how well a method is able to distinguish between two classes.   
 

 
 
 
Figure. ROC curves 
showing the 
relationship of 
sensitivity (true 
positive rate) to 
specificity (false 
positive rate) for 
Method A vs. 
Method B. 

 
 
 
 
 
 
 
(b) Traits seem to have been included completely indiscriminately and I think more thought is 
needed here to include ones that directly help to address the hypotheses and are non-repetitive. 

Method A 

Method B 
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For example, LittersperYr and LittersperYr_EXT are actually the same variable but with the 
latter variable has a bit more data in it by making some assumptions about methods of counting 
infants. There are many of these duplicate variables.  
 

We included all variables published in the PanTHERIA dataset, which represent 
both intrinsic host traits as well as biogeographical characteristics for each 
species. As noted by the reviewer, some of the variables in PanTHERIA are similar 
to each other. While there is appreciable correlation across some of the 
predictors, the variables themselves are not redundant. For example, we included 
X5.1_AdultBodyMass_g and X5.5_AdultBodyMass_g_EXT; and 
X16.1_LittersPerYear and X16.2_LittersPerYear_EXT. The _EXT suffix designates a 
derived variable in PanTHERIA which was calculated by fitting a GLM that 
accounts for known intercorrelated variables (e.g., a large degree of variation in 
Adult Body Mass is explained by Adult Body Length; similarly, a large degree of 
variation in Litters Per Year is explained by Interbirth Interval; explained in Table 
3, Metadata portion of (Jones et al. 2008)). Thus, for X5.5_AdultBodyMass_g_EXT, 
this approach yields a single fitted value representing Adult Body Mass after 
accounting for correlation with Adult Body Length. Generalized boosted 
regression algorithms include methods for regularization (“shrinkage”) to prevent 
overfitting so that simply including more predictor variables (Elith, Leathwick & 
Hastie 2008) will not lead to spurious improvements in prediction. By including all 
variables we allow the boosting algorithm to iteratively improve classification 
accuracy by learning from the additional information that may be represented in 
minor variables. However, as can be seen from the trait profiles, the majority of 
the derived variables are not important for prediction and we found that removing 
these variables from the analysis altogether did not improve nor degrade 
predictive performance of the models.  

More importantly, our purpose in taking a machine learning approach was to learn 
as directly as possible from the data that exists rather than limit the analysis to 
what we expected, a priori, would be important predictors. In other words, a major 
goal was to use the data to generate rather than test hypotheses linking life 
history to zoonotic host status. 

 
(c) It wasn't really that clear why the authors had just focused on rodents. Yes they have a lot of 
zoonotics but so do other mammalian orders such as bats, ungulates, carnivores etc. It didn't 
seem a huge amount of more work to do it across mammals.  
 

We focused on rodents because, historically, they have been identified as 
carrying a disproportionate number of zoonoses. As the reviewer suggests, we 
originally considered combining all clades into a single analysis but found 
fundamental data differences among the mammal clades (primates, carnivores, 
ungulates, rodents, and bats) that would impact our ability to interpret trait 
profiles. Using bats as an example clade - bats carry a large number of zoonoses 
just like the rodents, but the vast majority of these are viral whereas the 
distribution among protozoa, bacteria, helminths, and viruses are less skewed for 
the other clades. Bats also have quite complete data on adult forearm length 
(which is often recorded to estimate age and size), whereas this variable has near 
zero coverage in rodents and is less meaningful. These and similar clade-specific 
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differences in data coverage, and the biological information therein, led to 
different analyses, figures, and discussions. 
 

 
(d) It really wasn't clear how the 60-70% values were arrived at for the 13 species highlighted as 
novel zoonotic species or why that probability was chosen, e.g. why not >80%.  
 

The highest probability was 70%. We tried to strike a balance of selecting species 
with high probabilities (those in the 99th percentile) but not so many species that 
the map depicting their geographic ranges would appear too busy. We therefore 
chose a natural break in the probability results to arrive at 13 species (i.e., a nice 
round probability of 0.60), which includes those species which were ≥ 99.4th 
 percentile. Of course, there are many possible ways of selecting species. Exact 
probabilities can be replicated using our published code and data, if desired.  

 
 
(e) It wasn't clear why that particular machine learning classification method was chosen, there 
are a LOT out there! What makes this particular one good for this analysis? How sensitive are 
the results to the method? Would you get different results if you chose another one?  
 

These are excellent questions – there are indeed several methods available. 
Among the classification algorithms, neural nets and boosted trees are 
consistently in the top performers in terms of accuracy but boosted trees in our 
experience tend to be much more robust (less sensitive to tuning). Additionally, 
the local nature of classification trees means they should be less biased by data 
that are not evenly distributed across the input space. As a bonus, boosted 
regression trees are among the most accessible of the updated classification and 
regression algorithms, particularly to ecologists, due to the availability of tutorial-
like resources including a working guide (Elith et al. 2008) and several actively 
supported R packages and websites that support gbm analysis (gbm, dismo, 
caret).  
 

 
(f) What is the effect of missing data? There are a lot of species which only have body mass and 
this needed to be discussed.  
 

Boosted regression trees and other tree-based machine learning methods can 
readily accommodate missing values by treating “missingness” as an attribute of 
a predictor variable which the algorithm learns during the training process 
(described in detail in Section 9.6, p.332-333 of (Hastie, Tibshirani & Friedman 
2009); also see (Elith et al. 2008; Kunz, M. & Johnson, K. 2013). Importantly, missing 
values are not discarded or imputed, as commonly done for traditional parametric 
methods and some other machine learning methods.  
 
We double-checked our data for species where body mass was the sole reported 
variable and were unable to find any species for which this was the case. In any 
case, we agree that readers may be inquisitive about data coverage so we have 
included a new supplementary table reporting the percent coverage for each 
variable across all rodent species and for all rodent reservoir species (Table S3). 
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2. Results - (a) Some of the figures don't appear to be that novel and it isn't clear what value 
these have in a PNAS paper. For example, Figure 2a and 3a is just plotting out the richness 
map of zoonotic rodent species found in GIDEON, Figure S2 is a map of mammalian species 
richness which has been shown elsewhere.  
 

We were also surprised to be unable to find a published global map of the 
geographic distributions of zoonotic reservoir species, either generally (for 
mammals) or specifically for rodents. Thus we thought that, in addition to making 
a novel contribution, Figure 2a might be useful for sparking hypotheses for future 
work. For example, from this map we were curious as to why there weren’t more 
rodent reservoirs in regions with disproportionately high biodiversity (South 
America and Africa), especially in light of the conclusions of Jones et al. 2008 in 
which regions with high wildlife host species richness (developing countries at 
lower latitudes) are at greatest risk of future zoonotic disease emergence 
(discussed beginning in line 91). We included a map of mammal biodiversity in the 
supplementary materials for ease of reference, especially since regions of high 
mammal diversity coincide with rodent reservoir hot spots. We have dropped this 
map and replaced it with a citation for online maps of biodiversity available at 
mappingbiodiversity.org (Jenkins et al. 2013).  
 

 
(b) Table S1 seems to be missing the pathogen type next to the name of the pathogen and 
Table S2 needs more work to make it understandable, there are abbreviations not mentioned in 
the legend and the different results for the error distributions are never mentioned in the text but 
seem important?  
 

We have added back the pathogen type to Table S1.  
 
The error distributions in Table S2 correspond to the type of response variable for 
each analysis. For example, reservoir and super-reservoir status are binary 
response variables with Bernoulli distributed errors. The number of zoonotic 
diseases and the number of WOS citations per rodent species are both count 
variables and have Poisson distributed errors. We clarify this in lines 139-140 of 
the Methods, and also in the Figure legend of Table S2. We also added text 
mentioning the pseudo-R2 results from a model treating reservoir status as a 
count variable and mention explicitly that both count and binary treatments of 
reservoir status led to similar trait profiles (lines 63-65 of Results). 
 

 
Also I don't understand why there are only families in the table - where are the per species 
results? Also shouldn't there be misclassification rate results?  
 

The families in Table S2 reflect the use of families as additional binary variables in 
analyses. This allowed us to identify whether species in particular families were 
more likely to be zoonotic reservoirs (explained in lines 131-132 under Data). In 
contrast, the ‘per species results’ are the species predicted by the boosted 
regression models (reservoir and hyper-reservoir status, both as binary variables) 
to be novel reservoirs of zoonotic disease based on their trait profiles. 
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The misclassification rate is subsumed in AUC values, which sums the 
relationship of sensitivity (true positive rate) to specificity (false positive rate), and 
is a common diagnostic of how well a method is able to distinguish between two 
classes. These values are reported in Table S2. However, which misclassification 
indices are most salient when evaluating a model depend on how costly one 
considers false positives relative to false negatives. For our purposes, a false 
positive (classifying a species as a reservoir when it is not) is far less costly than 
a false negative (classifying a species as a non-reservoir when it has been 
demonstrated to harbor zoonoses) especially given the large number of species 
which have not been investigated. 
 

 
(c) It is not clear which taxonomy was used and how species from GIDEON were matched to 
those in Pantheria.  
 

Taxonomy for GIDEON and PanTHERIA were joined using (Wilson & Reeder 2005). 
We now note this explicitly at the end of the Methods section (lines 139-140).  

 
 
3. Importance - The machine learning approach is an interesting one, however in the end it is 
correlative not mechanistic method. I am not against correlative analyses at all but zoonotic 
emergence is a complicated process! What the authors are trying to model is the risk of a 
species becoming zoonotic by looking at host characteristics when in reality the probability of a 
species hosting a zoonotic pathogen also involves human ecology and host-human interactions 
(contact rates, human demography, socioeconomic status, phylogenetic relatedness of the host 
to humans). So I am not convinced that this (although interesting) study is a big conceptual step 
forward in understanding zoonotic emergence. 
 

Absolutely – the disease emergence process is hugely complicated, involving 
many additional factors including those listed here by the reviewer. Numerous 
other studies, including recent work exploring how poverty and biodiversity 
interact with infectious disease (Bonds, Dobson & Keenan 2012; Ngonghala et al. 
2014), have collectively made enormous contributions to our understanding of the 
diverse factors influencing zoonotic emergence and ecology (lines 112-113; we 
have also cited 11 representative studies in line 113). We hope that our unique 
examination of highly conserved intrinsic host traits will add value to this quickly 
evolving body of literature.  
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RE: Rodent reservoirs of future zoonotic diseases 
 
 
Dear Editors, 
 
Thank you for providing us the opportunity for a second revision. The reviewers have, again, 
provided thoughtful and constructive comments and questions, all of which we address below in 
blue text.  
 
This process has really helped to improve the communication of this work, and we hope that 
you will now find the paper suitable for publication in PNAS.  
 
All the best,  
 
Barbara Han 
 
 
 
REVIEWER 1:  
 
This is a very interesting manuscript on the forward-thinking topic of identifying potential sources 
of zoonotic disease before diseases emerge. I applaud the authors on their innovative 
approach.  
 
I am not fully convinced that the issue of sampling has been adequately addressed. The fact 
that traits didn't predict 'studiedness' out of sample is compelling. But it does do really well in-
sample. How did you choose the samples for the in-sample versus out-of-sample tests? I 
wonder how well the models would have done if you had chosen a different sample.  
 
The training (in-sample) and test (out of sample) data were partitioned randomly (by 
setting the seed) and stratifying by reservoir status, and the distribution of WOS hits (for 
studiedness). Training accuracy was determined through 10-fold cross-validation, 
providing results representing the averaging the results of 10 models trained on 10 
random partitions of the data.  
 
The main reasons that make me cautious are, as you said, the number of citations for each 
species increases monotonically with the number of zoonoses they harbor. And secondly, in 
support of your conclusions, you point out that the geographic ranges of the rodents you predict 
to be novel reservoirs are located in countries where human EID events are the most 
concentrated (according to Jones et al 2008). However, Jones et al. point out that the 
geographic distribution of EID events has been highly biased by sampling. And the relative risk 
maps also presented in Jones et al (fig 3) are quite different from the current EID distribution (fig 
2) because sampling bias was taken into account.  
 
I would be more convinced if there was some kind of secondary analysis that further 
demonstrates that sampling bias is not important. For example, if you put citations in your 
analysis where does it fall out? Is it toward the top of the tree? I know this doesn't get at the 
issue you are interested in- prediction of novel reservoirs, but it would give an indication of how 
important sampling is. You said that the number of citations for each species increases 
monotonically with the number of zoonoses they harbor. What about using the residuals of a 
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regression of # of zoonoses ~ citations, for your response variable in the regression trees- How 
different are your results then?  
 
We included citation counts in earlier analyses to confirm sampling effects, and  they 
were the top predictors of reservoir status/#zoonoses. This is not surprising, especially 
given that citation counts increase exponentially rather than linearly with the number of 
zoonotic pathogens found per species. There are additional, possibly interacting, factors 
driving sampling bias. As one example, Mus musculus carries 11 unique zoonotic 
pathogens, is an important model system for biomedical research, and also exhibits 
interesting behavioral changes due to zoonotic infection (being attracted to cat urine) by 
Toxoplasma gondii (the etiologic agent for Toxoplasmosis).  
 
These issues motivated us to consider more directly the possibility that we are 
describing the trait profile of well-studied rodent species rather than highly permissive 
zoonotic reservoirs. If this is so, we would expect that the traits that best predict citation 
counts are very similar (in both the order and magnitude of relative importance scores) 
to the traits predicting zoonotic status/#zoonoses. The last 2 columns of Table S2 show 
that the best-tuned models for predicting citation count returned very low pseudo-R2 
values (0.07). Even when we modeled a subset of the best-studied species (those with 
citation counts > 10), prediction accuracy only reached pseudo-R2=0.17.  
 
More generally, we realize that these and similar uncertainties raised during the review 
process could benefit from more lucid explanation concerning the relationship between 
sampling bias and intrinsic traits, which we have now added in lines 56-59. There is little 
doubt that sampling biases are inherent in these kinds of data (metrics of infection in 
humans and animals), but it is difficult to see how biases in our ability to sample 
infection in wild species will bias the estimates of species intrinsic biology or life history 
characteristics.  
 
Other comments/questions:  
 
I would have liked to see more of the main results that are in table S2 in the main text, perhaps 
a figure of variable importance for the top 7 or so variables for the different analyses? Is fig 4 in 
order of importance? Why some here and some in the supplemental?  
 
We put more of the main results from Table S2 into a new Figure (Fig. 4), which now 
shows, in order of importance, partial plots for all features with relative importance 
scores > 1. Originally, we had produced more partial plots and split them up by intrinsic 
biological features (for the main figure) and biogeographical features (which we tucked 
into supplementary section). We have deleted the biogeographical plots because the 
patterns they suggest were more effectively visualized as maps (Figs 2-3).  
 
We now present new maps visualizing geographic ranges for all species comprising the 
90th percentile of species predicted to be new reservoirs (Fig. 2B) or hyper-reservoirs 
(Fig. 3B). This provides a more intuitive depiction of hotspots of the top 10% of predicted 
new reservoirs, and a list of these species and their probabilities are now given in Table 
S4.  
 
The trait profiles given by both analyses (reservoir status vs. the number of zoonoses as 
response variables) after including species density are similar – the features and the 
directionality of the predictions tell a consistent story of fast life history traits being 
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robust predictors of reservoir status. We display the partial plots from the Poisson model 
in Fig 4, and include the partial plots from the Bernoulli model in a new Figure S1. More 
plots, if desired, can also be drawn using the code and data that will be deposited in 
Dryad. 
 
How did you classify a species as a reservoir? "... standard diagnostic procedures ..." Does that 
include detection of antibodies (that could cross-react)?  
 
We checked each putative reservoir species against published literature (those explicitly 
cited in GIDEON as well as more recently published studies) to ascertain that the 
scientific community had reached consensus that the species was indeed a sylvatic 
carrier of the infectious pathogen causing the zoonotic disease. In most cases this was 
easy given the large number of citations. For those species with fewer citations (e.g., 
recently identified reservoirs, or species carrying a rare or neglected zoonotic disease) 
we found that the papers of first report (those declaring a new zoonotic reservoir 
species) generally reflected a more rigorous diagnostic standard and were always peer-
reviewed. 
 
The authors mention biodiversity a lot, but why not include it in the model? For example, Luis et 
al 2013 use as a covariate the number of other (rodent/mammal) species within a species' 
distribution.  
 
Thanks for the suggestion. We counted the number of mammal species found within the 
geographic ranges for 2086 of 2277 species. 191 species were excluded, either because 
they had not been assessed by IUCN, or their species binomials do not match the most 
recent Wilson and Reeder (2005) mammal taxonomy.  
 
For these 2086 species we derived species density (1), the number of unique mammal 
species divided by the area of the species’ geographic range (n/km2), which corrects 
somewhat for the strong positive correlation between geographic range size and species 
richness. Including this new covariate (“SpeciesDensity” n/km2 in Table S2; partial plots 
labeled as “log Species (n/km2)”) did not improve prediction accuracy, and gave very 
similar model outputs (trait profiles in Table S2 and species predictions Table S4). The 
partial plot for this covariate shows that while the majority of rodent species reflect 
medium to high mammal richness within their geographic ranges, zoonotic reservoirs 
tend to have disproportionately lower mammal richness within their geographic ranges. 
However, one caveat is that these outputs must be considered in light of decelerating 
species area curves – ie, species richness will nearly always be lower in smaller ranges. 
We discuss the implications of this new result (and caveats) in lines 97 and lines 108+ of 
the revised manuscript, which we think could be an interesting topic for future work. 
 
I took me a while to understand figure 1. Because the legend starts with "types and frequencies 
of parasites", I at first thought that the numbers inside the circles were the number of parasites, 
e.g., there were 27 bacterial zoonoses that had 1 reservoir species. But if I now understand 
correctly, it's 27 rodent species that had 1 bacterial zoonosis. I would clarify in the legend.  
 
We have rewritten this legend for clarity.  
 
Table S1: Why are the arenaviruses listed separately by species, but the hantaviruses are 
simply classified as Old World- HFRS and New World-HPS? This lumps several species of 
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viruses together. A couple of species of arenavirus are not listed: Guanarito (Venezuelan 
hemorrhagic fever), and Flexal viruses. 
 
The hantaviruses are classified by GIDEON as “Hantavirus - Old World” vs. “hantavirus 
pulmonary syndrome”, which is the New World strain. The Old World strains cause 
hemorrhagic fever with renal syndrome whereas the New World strains cause Hantavirus 
pulmonary syndrome. There is essentially a unique strain of hantavirus for each rodent 
host species, and from the human health perspective, strain nomenclature is less 
important than how clusters of related strains present clinically in human patients.  
 
Thank you for catching the VHF error – it was inadvertently excluded from our list and 
has been added back (Table S1). According to recent correspondence with GIDEON 
scientific support, GIDEON currently does not report Flexal virus as a pathogen of 
zoonotic relevance. I was able to find reports of 2 human cases reported briefly in book 
chapters (where they were listed in tables without primary citations and no additional 
detail), but these reports do not identify the putative rodent reservoir down to the species 
level, which excludes Flexal virus from our analysis even if GIDEON had included it. 
  
What software/functions were used for the analyses?  
 
We used the R environment, and the gbm package for generalized boosted regressions, 
which we now specify in lines 184-185.  
 
Some kind of metadata for Tables S2 and 3 are needed. I saw no definition of the variables. 
E.g., What's PET? What does EXT mean?  
 
We have created a new Table S3 that lists all of the PanTHERIA variables included in our 
analysis along with their definitions, units of measure, and the percent coverage of each 
variable across all rodent species and across rodent reservoir species. 
 
 
REVIEWER 2:  
 
This is an interesting and topical manuscript, that is well presented.  
 
I have two major concerns:  
 
1) The term 'reservoir' is used misleadingly. Reservoir implies a definitive host responsible for 
the maintenance of endemic infection (see Haydon et al. 2002 EID). Whereas, the analyses 
presented show that potential for a zoonotic pathogen to be shared with particular rodent 
species, but does not predict reservoir status. At a stretch, I can see that the methods may 
predict potential candidates for reservoirs. But determining reservoir status for multi-host 
pathogens is a considerable undertaking even when potential hosts have been identified. This is 
an issue, which can easily be addressed by using less loaded terms (shared pathogens?). A 
definition of reservoirs would also help if it really has to be used. But I would strongly 
recommend putting a caveat about the capabilities to predict reservoir status.  
 
Yes, we wish to be clear about what we mean by ‘reservoir’, especially since it differs 
from the ecological definition. Since an ultimate goal of our study was to offer 
predictions about which species should be targeted to determine their status as possible 
zoonotic reservoirs (sensu strictu), we have kept the term but made clear our definitions 
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(line 178): “In contrast to other ecological definitions of reservoir (38), we apply the term 
more generally to encompass wild species capable of carrying infections transmissible 
to humans; Predicted reservoir species are undiscovered potential sources of infection 
known to be transmissible to humans.” 
 
 
2) I was glad to see that the authors demonstrate their methods do not just identify the most 
studied species. However, I am concerned that a similar problem may be apparent in terms of 
their methods identifying the areas of the world where the most extensive sampling and 
diagnosis of pathogens and parasites has been carried out (Fig 2A looks a bit like that - except 
for Australia which is a bit of an exception in terms of biogeography anyway). In the poorest 
parts of the world, most cases of disease are never diagnosed. Recent work (Crump et al. 2013) 
shows that the vast majority of febrile illness (of which there are very many) in parts of Africa are 
likely to be from bacterial zoonoses. But who knows what the causes of these illnesses are and 
what are the reservoir hosts for these pathogens/parasites. Further investigation of Lepto for 
instance shows that many potential species are involved and that rodents as previously 
presumed to be the reservoir may not actually be such important hosts. This is obviously not 
that easy to address, since this study is reliant on data of varying quality and extent from 
elsewhere. But I would really like to see this issue addressed somehow. It would be good to see 
whether there are any correlations between the density of laboratories/ PCR machines (or some 
other good proxy for pathogen detection)/ published studies using PCR/ sequencing and 
number of reservoir species shown in Fig 2A. I also think this point relates to that made by 
Reviewer 1 which the authors responded well to regarding the burden of zoonotic diseases. 
Again it needs to be made very clear that these are diagnosed outbreaks and that the likely 
burden of disease is much much higher in parts of the world with limited diagnostic 
infrastructure and capacity.  
 
Absolutely, the disparities in diagnostic capacity among countries are enormous. This 
was another reason we chose to examine intrinsic features of host biology and natural 
history because they are much less susceptible to issues of sampling bias. In our 
estimation there is little reason to suspect that a country’s capacity to diagnose infection 
(or, similarly, their GDP, or primary research productivity) will bias intrinsic properties of 
host species (like litter size, body size, or age to sexual maturity). We try to make this 
point more clearly in lines 58-62 of the revised manuscript. 
 
Out of curiosity, we did search for suitable proxies for “diagnostic capacity” among 
countries, but found that the specificity required for diagnostic tests for each infection, 
and the number of different kinds of diagnostic tests required for different pathogen 
types meant choosing one representative disease or diagnostic technology across 
countries would have introduced bias of a different kind (e.g., counting PCR machines 
would bias the dataset to include only infections that are diagnosable through PCR). In 
addition, the majority of countries in poorer regions of the world are served through 
regional centers that process samples pooled across multiple countries, so the 
geographical boundaries are less discernible.  
 
 
REVIEWER 3:  
 
Comments (Required):: […] for responding to my suggestions. I now feel more confident that 
the study was undertaken amongst critical thinking on the subject, albeit trying to generate 
hypotheses from existing data without a priori assumptions.  
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However, I believe that your introduction and discussion lacks punch to convince me why and 
where else we should use MBL to advance our understanding of wild reservoir hosts and 
emerging zoonoses including hot spots - if MBL helps to generate important hypotheses you 
should present these more convincingly.  
 
We have added text throughout the manuscript to further highlight the utility of MBL for 
hypothesis generation. See the Introduction (lines 47, 62) and the Discussion (lines 123, 
127). 
 
Better structure may address this. You discuss what the results may mean at a host level (L181-
187) and then there is speculative discussion of many issues before you start to discuss what 
hypotheses the results may raise at a geographic (including social, economic factors) level. That 
is, I find the discussion of the possible reasons for high latitude distribution of novel rodent 
reservoirs useful. It would be good to clarify whether 'human emerging infectious disease 
events' L225 means non-zoonotic EIDs. I presume it does and if so this points towards an 
interesting hypothesis.  
 
I remain skeptical of the worth of seeking to demonstrate concurrence of your interesting and 
specific results with those of Jones et al 2008. Some of this makes for confusing reading. There 
are many differences in the data and assumptions of these two analyses. For example, the 
following statement is also inaccurate 'to some degree' :L202-204 "To some degree these hot 
spots coincide with regions of high mammal diversity where the risk of zoonotic disease 
emergence is estimated to be greatest (2)". 
 
We have reorganized the results and discussion of this paragraph (lines 93-134) to 
present prominent patterns succinctly and moved up discussion of hypotheses. We 
clarify that “human emerging infectious disease events” refer to all EIDs (both non-
zoonotic and zoonotic EIDs). 
 
In this section we have also removed some of the text where we tried to place our results 
in the context of Jones et al. 2008, and deleted the sentence referred to above. 
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RE: Rodent reservoirs of future zoonotic diseases 
 
 
Dear Editors, 
 
Thank you for the opportunity to submit a third revision. We hope that we have now fully 
addressed all of the reviewers’ concerns (below, in blue text).  
 
Thanks very much for your efforts in the communication of our work.  
 
All the best,  
 
Barbara Han 
 
 
Reviewer Comments:  
 
Reviewer #1: 
 
Comments:  
 
I have enjoyed seeing the progression of this paper to its current high standard. Your results 
generated are very interesting. In a subsequent study it would be very interesting to identify 
what the trait overlap is between host, agricultural and urban pest rodent spp., as identified by 
MBL. This may provide useful insight into reasons for increased (rodent-borne) zoonotic disease 
emergence and /or the factors which may tip your predicted rodent hosts into actual hosts. 
There are many potential uses for such information.  
 

A good idea - thanks for the suggestion and for the thoughtful reviews.   
 

 
Reviewer #2:  
 
Comments:  
 
This paper is very exciting and innovative. Yet. I remain to be convinced that sampling bias was 
adequately addressed.  
 
Just because you are no longer comparing your results to those of Jones et al 2008 does not 
mean that the issue has been resolved. The areas that you predict to have more reservoirs are 
where human EID events are the most concentrated, yet the risk maps by Jones et al 2008 that 
take into account sampling bias are quite different. This point was not addressed.  
 

The risk maps produced by Jones et al. 2008 (Figure 3) do not take into account 
reporting bias. The legend for Figure 3 states, “The relative risk is calculated from 
regression coefficients and variable values in Table 1 (omitting the variable 
measuring reporting effort), categorized by standard deviations from the mean 
and mapped on a linear scale from green (lower values) to red (higher values).” To 
be clear, their logistic regression models (presence/absence of human outbreaks 
per country) do incorporate reporting bias, but relative risk for the maps in Figure 
3 is calculated from regressions that do not include reporting bias. Jones et al. 
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then compare global maps of reporting bias (reported in Supplementary Figure 3) 
to global maps of disease risk without reporting bias (reported in main Figure 3) to 
point out the geographical discrepancies between countries with high rates of 
disease reporting and those with predicted EID hotspots (see p.992, paragraph 2), 
and ultimately concluding that our surveillance resources are poorly allocated.  
 
This aside, our Figure 2b and the Jones et al. Figure 3a are disparate given 
fundamental differences between studies: our study was specific to rodents 
recorded to carry zoonoses, while their calculations of relative risk were based on 
the number of human outbreaks caused by any zoonotic pathogen carried by any 
non-human animal (including reptiles, birds, and all mammal species). Thus, the 
maps depict very different things: Jones et al. Figure 3a is a global map of the 
relative risk of human zoonotic outbreaks, while our Figure 2b maps geographic 
ranges of predicted new rodent reservoirs of zoonotic disease.  
 
 

AUC scores tend to be higher than pseudo-R2. Predicting a yes/no is much easier than 
predicting a number. When you predict the number of zoonoses in Table S2 (Poisson reservoir 
status) the out-of-sample prediction is not much better than the out-of-sample study effort 
(10+citations), 0.21 vs 0.17.  
 
With just a quick look at the data, I tallied up the number of citations on Web of Science for the 
top 12 species for both predicted new reservoirs and new hyper-reservoirs from table S4. (Also 
including appropriate synonyms for species, e.g. Arvicola amphibious = Arvicola terrestris.) Only 
a few of these species has <50 citations, showing that they are generally well studied species. 
The predicted hyper-reservoirs have about twice as many citations as the predicted reservoirs. 
There are a few predicted species with very few citations, but the overall picture doesn't 
convince me that citations aren't a big factor in these predictions. But this was just a quick look 
at the top 12. What would the bigger picture look like?  
 

To give a bigger picture of the relationship between citation count and reservoir 
status, we produced a scatterplot of the probability of being a reservoir (the 
output of the Bernoulli gbm) vs. the number of WOS citations, where each point 
represents a species and the color represents whether that species is known to 
carry 1 zoonosis (white), 2+ zoonoses (gray), or unknown reservoir status (red).  
 
This plot (shown below) makes clear that while there is skew (there are more well-
studied reservoirs and hyper-reservoirs), there are also several species that are 
well studied and not reservoirs, as well as unstudied species that are reservoirs. 
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Another analysis that would be even more convincing: when you include citations (and it's one 
of the top predictors) do the trait profiles look the same as these results (still larger ranges, 
shorter age at sexual maturity & gestation length, larger litter size, etc)? This could go in the 
supplemental.  
 

Yes, when citation count is included, the trait profile of a zoonotic reservoir 
remains very similar except that citation count is the top predictor. The tuning 
parameters, pseudo-R2, and trait profile from this model have been added to 
Supplementary Table 2.  
 
The trait profile and the corresponding partial dependence plots (now in a new 
Supplementary Figure 3) show that while citation count has the highest relative 
importance for correctly predicting the number of zoonoses carried by rodent 
species, the intrinsic traits which follow are consistent with our findings that 
rodent reservoirs have larger geographic ranges and are distinguished by a “fast-
paced” life history strategy compared to non-reservoirs. Reservoirs tend to reach 
sexual maturity early and produce large litters more times per year, and the mean 
mass of offspring produced per year (normalized by adult body size; production 
(36)) is also greater. The results of this additional analysis have been added in 
lines 181-185. 
 
 

If this point was addressed, I would be fully supportive of publication in PNAS. 
 


